diff options
Diffstat (limited to 'arch/x86/kvm/mmu/spte.h')
-rw-r--r-- | arch/x86/kvm/mmu/spte.h | 78 |
1 files changed, 41 insertions, 37 deletions
diff --git a/arch/x86/kvm/mmu/spte.h b/arch/x86/kvm/mmu/spte.h index 2cb816ea2430..f332b33bc817 100644 --- a/arch/x86/kvm/mmu/spte.h +++ b/arch/x86/kvm/mmu/spte.h @@ -167,6 +167,15 @@ static_assert(!(SHADOW_NONPRESENT_VALUE & SPTE_MMU_PRESENT_MASK)); #define SHADOW_NONPRESENT_VALUE 0ULL #endif + +/* + * True if A/D bits are supported in hardware and are enabled by KVM. When + * enabled, KVM uses A/D bits for all non-nested MMUs. Because L1 can disable + * A/D bits in EPTP12, SP and SPTE variants are needed to handle the scenario + * where KVM is using A/D bits for L1, but not L2. + */ +extern bool __read_mostly kvm_ad_enabled; + extern u64 __read_mostly shadow_host_writable_mask; extern u64 __read_mostly shadow_mmu_writable_mask; extern u64 __read_mostly shadow_nx_mask; @@ -285,17 +294,6 @@ static inline bool is_ept_ve_possible(u64 spte) (spte & VMX_EPT_RWX_MASK) != VMX_EPT_MISCONFIG_WX_VALUE; } -/* - * Returns true if A/D bits are supported in hardware and are enabled by KVM. - * When enabled, KVM uses A/D bits for all non-nested MMUs. Because L1 can - * disable A/D bits in EPTP12, SP and SPTE variants are needed to handle the - * scenario where KVM is using A/D bits for L1, but not L2. - */ -static inline bool kvm_ad_enabled(void) -{ - return !!shadow_accessed_mask; -} - static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) { return sp->role.ad_disabled; @@ -318,18 +316,6 @@ static inline bool spte_ad_need_write_protect(u64 spte) return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_ENABLED; } -static inline u64 spte_shadow_accessed_mask(u64 spte) -{ - KVM_MMU_WARN_ON(!is_shadow_present_pte(spte)); - return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; -} - -static inline u64 spte_shadow_dirty_mask(u64 spte) -{ - KVM_MMU_WARN_ON(!is_shadow_present_pte(spte)); - return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; -} - static inline bool is_access_track_spte(u64 spte) { return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; @@ -357,17 +343,7 @@ static inline kvm_pfn_t spte_to_pfn(u64 pte) static inline bool is_accessed_spte(u64 spte) { - u64 accessed_mask = spte_shadow_accessed_mask(spte); - - return accessed_mask ? spte & accessed_mask - : !is_access_track_spte(spte); -} - -static inline bool is_dirty_spte(u64 spte) -{ - u64 dirty_mask = spte_shadow_dirty_mask(spte); - - return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; + return spte & shadow_accessed_mask; } static inline u64 get_rsvd_bits(struct rsvd_bits_validate *rsvd_check, u64 pte, @@ -485,6 +461,33 @@ static inline bool is_mmu_writable_spte(u64 spte) return spte & shadow_mmu_writable_mask; } +/* + * If the MMU-writable flag is cleared, i.e. the SPTE is write-protected for + * write-tracking, remote TLBs must be flushed, even if the SPTE was read-only, + * as KVM allows stale Writable TLB entries to exist. When dirty logging, KVM + * flushes TLBs based on whether or not dirty bitmap/ring entries were reaped, + * not whether or not SPTEs were modified, i.e. only the write-tracking case + * needs to flush at the time the SPTEs is modified, before dropping mmu_lock. + * + * Don't flush if the Accessed bit is cleared, as access tracking tolerates + * false negatives, e.g. KVM x86 omits TLB flushes even when aging SPTEs for a + * mmu_notifier.clear_flush_young() event. + * + * Lastly, don't flush if the Dirty bit is cleared, as KVM unconditionally + * flushes when enabling dirty logging (see kvm_mmu_slot_apply_flags()), and + * when clearing dirty logs, KVM flushes based on whether or not dirty entries + * were reaped from the bitmap/ring, not whether or not dirty SPTEs were found. + * + * Note, this logic only applies to shadow-present leaf SPTEs. The caller is + * responsible for checking that the old SPTE is shadow-present, and is also + * responsible for determining whether or not a TLB flush is required when + * modifying a shadow-present non-leaf SPTE. + */ +static inline bool leaf_spte_change_needs_tlb_flush(u64 old_spte, u64 new_spte) +{ + return is_mmu_writable_spte(old_spte) && !is_mmu_writable_spte(new_spte); +} + static inline u64 get_mmio_spte_generation(u64 spte) { u64 gen; @@ -499,10 +502,11 @@ bool spte_has_volatile_bits(u64 spte); bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, const struct kvm_memory_slot *slot, unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, - u64 old_spte, bool prefetch, bool can_unsync, + u64 old_spte, bool prefetch, bool synchronizing, bool host_writable, u64 *new_spte); -u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, - union kvm_mmu_page_role role, int index); +u64 make_small_spte(struct kvm *kvm, u64 huge_spte, + union kvm_mmu_page_role role, int index); +u64 make_huge_spte(struct kvm *kvm, u64 small_spte, int level); u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled); u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access); u64 mark_spte_for_access_track(u64 spte); |