diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2024-11-23 16:00:50 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2024-11-23 16:00:50 -0800 |
commit | 9f16d5e6f220661f73b36a4be1b21575651d8833 (patch) | |
tree | 8d26e5eeb7d74c83667ad91332c961c631ac6907 /arch/riscv/kvm/vcpu_switch.S | |
parent | 42d9e8b7ccddee75989283cf7477305cfe3776ff (diff) | |
parent | 9ee62c33c0fe017ee02501a877f6f562363122fa (diff) | |
download | linux-9f16d5e6f220661f73b36a4be1b21575651d8833.tar.gz linux-9f16d5e6f220661f73b36a4be1b21575651d8833.tar.bz2 linux-9f16d5e6f220661f73b36a4be1b21575651d8833.zip |
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"The biggest change here is eliminating the awful idea that KVM had of
essentially guessing which pfns are refcounted pages.
The reason to do so was that KVM needs to map both non-refcounted
pages (for example BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP
VMAs that contain refcounted pages.
However, the result was security issues in the past, and more recently
the inability to map VM_IO and VM_PFNMAP memory that _is_ backed by
struct page but is not refcounted. In particular this broke virtio-gpu
blob resources (which directly map host graphics buffers into the
guest as "vram" for the virtio-gpu device) with the amdgpu driver,
because amdgpu allocates non-compound higher order pages and the tail
pages could not be mapped into KVM.
This requires adjusting all uses of struct page in the
per-architecture code, to always work on the pfn whenever possible.
The large series that did this, from David Stevens and Sean
Christopherson, also cleaned up substantially the set of functions
that provided arch code with the pfn for a host virtual addresses.
The previous maze of twisty little passages, all different, is
replaced by five functions (__gfn_to_page, __kvm_faultin_pfn, the
non-__ versions of these two, and kvm_prefetch_pages) saving almost
200 lines of code.
ARM:
- Support for stage-1 permission indirection (FEAT_S1PIE) and
permission overlays (FEAT_S1POE), including nested virt + the
emulated page table walker
- Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This
call was introduced in PSCIv1.3 as a mechanism to request
hibernation, similar to the S4 state in ACPI
- Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As
part of it, introduce trivial initialization of the host's MPAM
context so KVM can use the corresponding traps
- PMU support under nested virtualization, honoring the guest
hypervisor's trap configuration and event filtering when running a
nested guest
- Fixes to vgic ITS serialization where stale device/interrupt table
entries are not zeroed when the mapping is invalidated by the VM
- Avoid emulated MMIO completion if userspace has requested
synchronous external abort injection
- Various fixes and cleanups affecting pKVM, vCPU initialization, and
selftests
LoongArch:
- Add iocsr and mmio bus simulation in kernel.
- Add in-kernel interrupt controller emulation.
- Add support for virtualization extensions to the eiointc irqchip.
PPC:
- Drop lingering and utterly obsolete references to PPC970 KVM, which
was removed 10 years ago.
- Fix incorrect documentation references to non-existing ioctls
RISC-V:
- Accelerate KVM RISC-V when running as a guest
- Perf support to collect KVM guest statistics from host side
s390:
- New selftests: more ucontrol selftests and CPU model sanity checks
- Support for the gen17 CPU model
- List registers supported by KVM_GET/SET_ONE_REG in the
documentation
x86:
- Cleanup KVM's handling of Accessed and Dirty bits to dedup code,
improve documentation, harden against unexpected changes.
Even if the hardware A/D tracking is disabled, it is possible to
use the hardware-defined A/D bits to track if a PFN is Accessed
and/or Dirty, and that removes a lot of special cases.
- Elide TLB flushes when aging secondary PTEs, as has been done in
x86's primary MMU for over 10 years.
- Recover huge pages in-place in the TDP MMU when dirty page logging
is toggled off, instead of zapping them and waiting until the page
is re-accessed to create a huge mapping. This reduces vCPU jitter.
- Batch TLB flushes when dirty page logging is toggled off. This
reduces the time it takes to disable dirty logging by ~3x.
- Remove the shrinker that was (poorly) attempting to reclaim shadow
page tables in low-memory situations.
- Clean up and optimize KVM's handling of writes to
MSR_IA32_APICBASE.
- Advertise CPUIDs for new instructions in Clearwater Forest
- Quirk KVM's misguided behavior of initialized certain feature MSRs
to their maximum supported feature set, which can result in KVM
creating invalid vCPU state. E.g. initializing PERF_CAPABILITIES to
a non-zero value results in the vCPU having invalid state if
userspace hides PDCM from the guest, which in turn can lead to
save/restore failures.
- Fix KVM's handling of non-canonical checks for vCPUs that support
LA57 to better follow the "architecture", in quotes because the
actual behavior is poorly documented. E.g. most MSR writes and
descriptor table loads ignore CR4.LA57 and operate purely on
whether the CPU supports LA57.
- Bypass the register cache when querying CPL from kvm_sched_out(),
as filling the cache from IRQ context is generally unsafe; harden
the cache accessors to try to prevent similar issues from occuring
in the future. The issue that triggered this change was already
fixed in 6.12, but was still kinda latent.
- Advertise AMD_IBPB_RET to userspace, and fix a related bug where
KVM over-advertises SPEC_CTRL when trying to support cross-vendor
VMs.
- Minor cleanups
- Switch hugepage recovery thread to use vhost_task.
These kthreads can consume significant amounts of CPU time on
behalf of a VM or in response to how the VM behaves (for example
how it accesses its memory); therefore KVM tried to place the
thread in the VM's cgroups and charge the CPU time consumed by that
work to the VM's container.
However the kthreads did not process SIGSTOP/SIGCONT, and therefore
cgroups which had KVM instances inside could not complete freezing.
Fix this by replacing the kthread with a PF_USER_WORKER thread, via
the vhost_task abstraction. Another 100+ lines removed, with
generally better behavior too like having these threads properly
parented in the process tree.
- Revert a workaround for an old CPU erratum (Nehalem/Westmere) that
didn't really work; there was really nothing to work around anyway:
the broken patch was meant to fix nested virtualization, but the
PERF_GLOBAL_CTRL MSR is virtualized and therefore unaffected by the
erratum.
- Fix 6.12 regression where CONFIG_KVM will be built as a module even
if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is
'y'.
x86 selftests:
- x86 selftests can now use AVX.
Documentation:
- Use rST internal links
- Reorganize the introduction to the API document
Generic:
- Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock
instead of RCU, so that running a vCPU on a different task doesn't
encounter long due to having to wait for all CPUs become quiescent.
In general both reads and writes are rare, but userspace that
supports confidential computing is introducing the use of "helper"
vCPUs that may jump from one host processor to another. Those will
be very happy to trigger a synchronize_rcu(), and the effect on
performance is quite the disaster"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (298 commits)
KVM: x86: Break CONFIG_KVM_X86's direct dependency on KVM_INTEL || KVM_AMD
KVM: x86: add back X86_LOCAL_APIC dependency
Revert "KVM: VMX: Move LOAD_IA32_PERF_GLOBAL_CTRL errata handling out of setup_vmcs_config()"
KVM: x86: switch hugepage recovery thread to vhost_task
KVM: x86: expose MSR_PLATFORM_INFO as a feature MSR
x86: KVM: Advertise CPUIDs for new instructions in Clearwater Forest
Documentation: KVM: fix malformed table
irqchip/loongson-eiointc: Add virt extension support
LoongArch: KVM: Add irqfd support
LoongArch: KVM: Add PCHPIC user mode read and write functions
LoongArch: KVM: Add PCHPIC read and write functions
LoongArch: KVM: Add PCHPIC device support
LoongArch: KVM: Add EIOINTC user mode read and write functions
LoongArch: KVM: Add EIOINTC read and write functions
LoongArch: KVM: Add EIOINTC device support
LoongArch: KVM: Add IPI user mode read and write function
LoongArch: KVM: Add IPI read and write function
LoongArch: KVM: Add IPI device support
LoongArch: KVM: Add iocsr and mmio bus simulation in kernel
KVM: arm64: Pass on SVE mapping failures
...
Diffstat (limited to 'arch/riscv/kvm/vcpu_switch.S')
-rw-r--r-- | arch/riscv/kvm/vcpu_switch.S | 137 |
1 files changed, 87 insertions, 50 deletions
diff --git a/arch/riscv/kvm/vcpu_switch.S b/arch/riscv/kvm/vcpu_switch.S index 0c26189aa01c..47686bcb21e0 100644 --- a/arch/riscv/kvm/vcpu_switch.S +++ b/arch/riscv/kvm/vcpu_switch.S @@ -11,11 +11,7 @@ #include <asm/asm-offsets.h> #include <asm/csr.h> - .text - .altmacro - .option norelax - -SYM_FUNC_START(__kvm_riscv_switch_to) +.macro SAVE_HOST_GPRS /* Save Host GPRs (except A0 and T0-T6) */ REG_S ra, (KVM_ARCH_HOST_RA)(a0) REG_S sp, (KVM_ARCH_HOST_SP)(a0) @@ -40,39 +36,33 @@ SYM_FUNC_START(__kvm_riscv_switch_to) REG_S s9, (KVM_ARCH_HOST_S9)(a0) REG_S s10, (KVM_ARCH_HOST_S10)(a0) REG_S s11, (KVM_ARCH_HOST_S11)(a0) +.endm +.macro SAVE_HOST_AND_RESTORE_GUEST_CSRS __resume_addr /* Load Guest CSR values */ REG_L t0, (KVM_ARCH_GUEST_SSTATUS)(a0) - REG_L t1, (KVM_ARCH_GUEST_HSTATUS)(a0) - REG_L t2, (KVM_ARCH_GUEST_SCOUNTEREN)(a0) - la t4, .Lkvm_switch_return - REG_L t5, (KVM_ARCH_GUEST_SEPC)(a0) + la t1, \__resume_addr + REG_L t2, (KVM_ARCH_GUEST_SEPC)(a0) /* Save Host and Restore Guest SSTATUS */ csrrw t0, CSR_SSTATUS, t0 - /* Save Host and Restore Guest HSTATUS */ - csrrw t1, CSR_HSTATUS, t1 - - /* Save Host and Restore Guest SCOUNTEREN */ - csrrw t2, CSR_SCOUNTEREN, t2 - /* Save Host STVEC and change it to return path */ - csrrw t4, CSR_STVEC, t4 + csrrw t1, CSR_STVEC, t1 + + /* Restore Guest SEPC */ + csrw CSR_SEPC, t2 /* Save Host SSCRATCH and change it to struct kvm_vcpu_arch pointer */ csrrw t3, CSR_SSCRATCH, a0 - /* Restore Guest SEPC */ - csrw CSR_SEPC, t5 - /* Store Host CSR values */ REG_S t0, (KVM_ARCH_HOST_SSTATUS)(a0) - REG_S t1, (KVM_ARCH_HOST_HSTATUS)(a0) - REG_S t2, (KVM_ARCH_HOST_SCOUNTEREN)(a0) + REG_S t1, (KVM_ARCH_HOST_STVEC)(a0) REG_S t3, (KVM_ARCH_HOST_SSCRATCH)(a0) - REG_S t4, (KVM_ARCH_HOST_STVEC)(a0) +.endm +.macro RESTORE_GUEST_GPRS /* Restore Guest GPRs (except A0) */ REG_L ra, (KVM_ARCH_GUEST_RA)(a0) REG_L sp, (KVM_ARCH_GUEST_SP)(a0) @@ -107,13 +97,9 @@ SYM_FUNC_START(__kvm_riscv_switch_to) /* Restore Guest A0 */ REG_L a0, (KVM_ARCH_GUEST_A0)(a0) +.endm - /* Resume Guest */ - sret - - /* Back to Host */ - .align 2 -.Lkvm_switch_return: +.macro SAVE_GUEST_GPRS /* Swap Guest A0 with SSCRATCH */ csrrw a0, CSR_SSCRATCH, a0 @@ -148,39 +134,33 @@ SYM_FUNC_START(__kvm_riscv_switch_to) REG_S t4, (KVM_ARCH_GUEST_T4)(a0) REG_S t5, (KVM_ARCH_GUEST_T5)(a0) REG_S t6, (KVM_ARCH_GUEST_T6)(a0) +.endm +.macro SAVE_GUEST_AND_RESTORE_HOST_CSRS /* Load Host CSR values */ - REG_L t1, (KVM_ARCH_HOST_STVEC)(a0) - REG_L t2, (KVM_ARCH_HOST_SSCRATCH)(a0) - REG_L t3, (KVM_ARCH_HOST_SCOUNTEREN)(a0) - REG_L t4, (KVM_ARCH_HOST_HSTATUS)(a0) - REG_L t5, (KVM_ARCH_HOST_SSTATUS)(a0) - - /* Save Guest SEPC */ - csrr t0, CSR_SEPC + REG_L t0, (KVM_ARCH_HOST_STVEC)(a0) + REG_L t1, (KVM_ARCH_HOST_SSCRATCH)(a0) + REG_L t2, (KVM_ARCH_HOST_SSTATUS)(a0) /* Save Guest A0 and Restore Host SSCRATCH */ - csrrw t2, CSR_SSCRATCH, t2 + csrrw t1, CSR_SSCRATCH, t1 - /* Restore Host STVEC */ - csrw CSR_STVEC, t1 - - /* Save Guest and Restore Host SCOUNTEREN */ - csrrw t3, CSR_SCOUNTEREN, t3 + /* Save Guest SEPC */ + csrr t3, CSR_SEPC - /* Save Guest and Restore Host HSTATUS */ - csrrw t4, CSR_HSTATUS, t4 + /* Restore Host STVEC */ + csrw CSR_STVEC, t0 /* Save Guest and Restore Host SSTATUS */ - csrrw t5, CSR_SSTATUS, t5 + csrrw t2, CSR_SSTATUS, t2 /* Store Guest CSR values */ - REG_S t0, (KVM_ARCH_GUEST_SEPC)(a0) - REG_S t2, (KVM_ARCH_GUEST_A0)(a0) - REG_S t3, (KVM_ARCH_GUEST_SCOUNTEREN)(a0) - REG_S t4, (KVM_ARCH_GUEST_HSTATUS)(a0) - REG_S t5, (KVM_ARCH_GUEST_SSTATUS)(a0) + REG_S t1, (KVM_ARCH_GUEST_A0)(a0) + REG_S t2, (KVM_ARCH_GUEST_SSTATUS)(a0) + REG_S t3, (KVM_ARCH_GUEST_SEPC)(a0) +.endm +.macro RESTORE_HOST_GPRS /* Restore Host GPRs (except A0 and T0-T6) */ REG_L ra, (KVM_ARCH_HOST_RA)(a0) REG_L sp, (KVM_ARCH_HOST_SP)(a0) @@ -205,11 +185,68 @@ SYM_FUNC_START(__kvm_riscv_switch_to) REG_L s9, (KVM_ARCH_HOST_S9)(a0) REG_L s10, (KVM_ARCH_HOST_S10)(a0) REG_L s11, (KVM_ARCH_HOST_S11)(a0) +.endm + + .text + .altmacro + .option norelax + + /* + * Parameters: + * A0 <= Pointer to struct kvm_vcpu_arch + */ +SYM_FUNC_START(__kvm_riscv_switch_to) + SAVE_HOST_GPRS + + SAVE_HOST_AND_RESTORE_GUEST_CSRS .Lkvm_switch_return + + RESTORE_GUEST_GPRS + + /* Resume Guest using SRET */ + sret + + /* Back to Host */ + .align 2 +.Lkvm_switch_return: + SAVE_GUEST_GPRS + + SAVE_GUEST_AND_RESTORE_HOST_CSRS + + RESTORE_HOST_GPRS /* Return to C code */ ret SYM_FUNC_END(__kvm_riscv_switch_to) + /* + * Parameters: + * A0 <= Pointer to struct kvm_vcpu_arch + * A1 <= SBI extension ID + * A2 <= SBI function ID + */ +SYM_FUNC_START(__kvm_riscv_nacl_switch_to) + SAVE_HOST_GPRS + + SAVE_HOST_AND_RESTORE_GUEST_CSRS .Lkvm_nacl_switch_return + + /* Resume Guest using SBI nested acceleration */ + add a6, a2, zero + add a7, a1, zero + ecall + + /* Back to Host */ + .align 2 +.Lkvm_nacl_switch_return: + SAVE_GUEST_GPRS + + SAVE_GUEST_AND_RESTORE_HOST_CSRS + + RESTORE_HOST_GPRS + + /* Return to C code */ + ret +SYM_FUNC_END(__kvm_riscv_nacl_switch_to) + SYM_CODE_START(__kvm_riscv_unpriv_trap) /* * We assume that faulting unpriv load/store instruction is |