summaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)Author
2023-04-25Merge tag 'timers-core-2023-04-24' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timers and timekeeping updates from Thomas Gleixner: - Improve the VDSO build time checks to cover all dynamic relocations VDSO does not allow dynamic relocations, but the build time check is incomplete and fragile. It's based on architectures specifying the relocation types to search for and does not handle R_*_NONE relocation entries correctly. R_*_NONE relocations are injected by some GNU ld variants if they fail to determine the exact .rel[a]/dyn_size to cover trailing zeros. R_*_NONE relocations must be ignored by dynamic loaders, so they should be ignored in the build time check too. Remove the architecture specific relocation types to check for and validate strictly that no other relocations than R_*_NONE end up in the VSDO .so file. - Prefer signal delivery to the current thread for CLOCK_PROCESS_CPUTIME_ID based posix-timers Such timers prefer to deliver the signal to the main thread of a process even if the context in which the timer expires is the current task. This has the downside that it might wake up an idle thread. As there is no requirement or guarantee that the signal has to be delivered to the main thread, avoid this by preferring the current task if it is part of the thread group which shares sighand. This not only avoids waking idle threads, it also distributes the signal delivery in case of multiple timers firing in the context of different threads close to each other better. - Align the tick period properly (again) For a long time the tick was starting at CLOCK_MONOTONIC zero, which allowed users space applications to either align with the tick or to place a periodic computation so that it does not interfere with the tick. The alignement of the tick period was more by chance than by intention as the tick is set up before a high resolution clocksource is installed, i.e. timekeeping is still tick based and the tick period advances from there. The early enablement of sched_clock() broke this alignement as the time accumulated by sched_clock() is taken into account when timekeeping is initialized. So the base value now(CLOCK_MONOTONIC) is not longer a multiple of tick periods, which breaks applications which relied on that behaviour. Cure this by aligning the tick starting point to the next multiple of tick periods, i.e 1000ms/CONFIG_HZ. - A set of NOHZ fixes and enhancements: * Cure the concurrent writer race for idle and IO sleeptime statistics The statitic values which are exposed via /proc/stat are updated from the CPU local idle exit and remotely by cpufreq, but that happens without any form of serialization. As a consequence sleeptimes can be accounted twice or worse. Prevent this by restricting the accumulation writeback to the CPU local idle exit and let the remote access compute the accumulated value. * Protect idle/iowait sleep time with a sequence count Reading idle/iowait sleep time, e.g. from /proc/stat, can race with idle exit updates. As a consequence the readout may result in random and potentially going backwards values. Protect this by a sequence count, which fixes the idle time statistics issue, but cannot fix the iowait time problem because iowait time accounting races with remote wake ups decrementing the remote runqueues nr_iowait counter. The latter is impossible to fix, so the only way to deal with that is to document it properly and to remove the assertion in the selftest which triggers occasionally due to that. * Restructure struct tick_sched for better cache layout * Some small cleanups and a better cache layout for struct tick_sched - Implement the missing timer_wait_running() callback for POSIX CPU timers For unknown reason the introduction of the timer_wait_running() callback missed to fixup posix CPU timers, which went unnoticed for almost four years. While initially only targeted to prevent livelocks between a timer deletion and the timer expiry function on PREEMPT_RT enabled kernels, it turned out that fixing this for mainline is not as trivial as just implementing a stub similar to the hrtimer/timer callbacks. The reason is that for CONFIG_POSIX_CPU_TIMERS_TASK_WORK enabled systems there is a livelock issue independent of RT. CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y moves the expiry of POSIX CPU timers out from hard interrupt context to task work, which is handled before returning to user space or to a VM. The expiry mechanism moves the expired timers to a stack local list head with sighand lock held. Once sighand is dropped the task can be preempted and a task which wants to delete a timer will spin-wait until the expiry task is scheduled back in. In the worst case this will end up in a livelock when the preempting task and the expiry task are pinned on the same CPU. The timer wheel has a timer_wait_running() mechanism for RT, which uses a per CPU timer-base expiry lock which is held by the expiry code and the task waiting for the timer function to complete blocks on that lock. This does not work in the same way for posix CPU timers as there is no timer base and expiry for process wide timers can run on any task belonging to that process, but the concept of waiting on an expiry lock can be used too in a slightly different way. Add a per task mutex to struct posix_cputimers_work, let the expiry task hold it accross the expiry function and let the deleting task which waits for the expiry to complete block on the mutex. In the non-contended case this results in an extra mutex_lock()/unlock() pair on both sides. This avoids spin-waiting on a task which is scheduled out, prevents the livelock and cures the problem for RT and !RT systems * tag 'timers-core-2023-04-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: posix-cpu-timers: Implement the missing timer_wait_running callback selftests/proc: Assert clock_gettime(CLOCK_BOOTTIME) VS /proc/uptime monotonicity selftests/proc: Remove idle time monotonicity assertions MAINTAINERS: Remove stale email address timers/nohz: Remove middle-function __tick_nohz_idle_stop_tick() timers/nohz: Add a comment about broken iowait counter update race timers/nohz: Protect idle/iowait sleep time under seqcount timers/nohz: Only ever update sleeptime from idle exit timers/nohz: Restructure and reshuffle struct tick_sched tick/common: Align tick period with the HZ tick. selftests/timers/posix_timers: Test delivery of signals across threads posix-timers: Prefer delivery of signals to the current thread vdso: Improve cmd_vdso_check to check all dynamic relocations
2023-04-25Merge tag 'irq-core-2023-04-24' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull interrupt updates from Thomas Gleixner: "Core: - Add tracepoints for tasklet callbacks which makes it possible to analyze individual tasklet functions instead of guess working from the overall duration of tasklet processing - Ensure that secondary interrupt threads have their affinity adjusted correctly Drivers: - A large rework of the RISC-V IPI management to prepare for a new RISC-V interrupt architecture - Small fixes and enhancements all over the place - Removal of support for various obsolete hardware platforms and the related code" * tag 'irq-core-2023-04-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits) irqchip/st: Remove stih415/stih416 and stid127 platforms support irqchip/gic-v3: Add Rockchip 3588001 erratum workaround genirq: Update affinity of secondary threads softirq: Add trace points for tasklet entry/exit irqchip/loongson-pch-pic: Fix pch_pic_acpi_init calling irqchip/loongson-pch-pic: Fix registration of syscore_ops irqchip/loongson-eiointc: Fix registration of syscore_ops irqchip/loongson-eiointc: Fix incorrect use of acpi_get_vec_parent irqchip/loongson-eiointc: Fix returned value on parsing MADT irqchip/riscv-intc: Add empty irq_eoi() for chained irq handlers RISC-V: Use IPIs for remote icache flush when possible RISC-V: Use IPIs for remote TLB flush when possible RISC-V: Allow marking IPIs as suitable for remote FENCEs RISC-V: Treat IPIs as normal Linux IRQs irqchip/riscv-intc: Allow drivers to directly discover INTC hwnode RISC-V: Clear SIP bit only when using SBI IPI operations irqchip/irq-sifive-plic: Add syscore callbacks for hibernation irqchip: Use of_property_read_bool() for boolean properties irqchip/bcm-6345-l1: Request memory region irqchip/gicv3: Workaround for NVIDIA erratum T241-FABRIC-4 ...
2023-04-25Merge tag 'core-entry-2023-04-24' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull core entry/ptrace update from Thomas Gleixner: "Provide a ptrace set/get interface for syscall user dispatch. The main purpose is to enable checkpoint/restore (CRIU) to handle processes which utilize syscall user dispatch correctly" * tag 'core-entry-2023-04-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: selftest, ptrace: Add selftest for syscall user dispatch config api ptrace: Provide set/get interface for syscall user dispatch syscall_user_dispatch: Untag selector address before access_ok() syscall_user_dispatch: Split up set_syscall_user_dispatch()
2023-04-24Merge tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfsLinus Torvalds
Pull vfs fget updates from Al Viro: "fget() to fdget() conversions" * tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: fuse_dev_ioctl(): switch to fdget() cgroup_get_from_fd(): switch to fdget_raw() bpf: switch to fdget_raw() build_mount_idmapped(): switch to fdget() kill the last remaining user of proc_ns_fget() SVM-SEV: convert the rest of fget() uses to fdget() in there convert sgx_set_attribute() to fdget()/fdput() convert setns(2) to fdget()/fdput()
2023-04-24Merge tag 'v6.4/pidfd.file' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull pidfd updates from Christian Brauner: "This adds a new pidfd_prepare() helper which allows the caller to reserve a pidfd number and allocates a new pidfd file that stashes the provided struct pid. It should be avoided installing a file descriptor into a task's file descriptor table just to close it again via close_fd() in case an error occurs. The fd has been visible to userspace and might already be in use. Instead, a file descriptor should be reserved but not installed into the caller's file descriptor table. If another failure path is hit then the reserved file descriptor and file can just be put without any userspace visible side-effects. And if all failure paths are cleared the file descriptor and file can be installed into the task's file descriptor table. This helper is now used in all places that open coded this functionality before. For example, this is currently done during copy_process() and fanotify used pidfd_create(), which returns a pidfd that has already been made visibile in the caller's file descriptor table, but then closed it using close_fd(). In one of the next merge windows there is also new functionality coming to unix domain sockets that will have to rely on pidfd_prepare()" * tag 'v6.4/pidfd.file' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: fanotify: use pidfd_prepare() fork: use pidfd_prepare() pid: add pidfd_prepare()
2023-04-24Merge tag 'v6.4/kernel.user_worker' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull user work thread updates from Christian Brauner: "This contains the work generalizing the ability to create a kernel worker from a userspace process. Such user workers will run with the same credentials as the userspace process they were created from providing stronger security and accounting guarantees than the traditional override_creds() approach ever could've hoped for. The original work was heavily based and optimzed for the needs of io_uring which was the first user. However, as it quickly turned out the ability to create user workers inherting properties from a userspace process is generally useful. The vhost subsystem currently creates workers using the kthread api. The consequences of using the kthread api are that RLIMITs don't work correctly as they are inherited from khtreadd. This leads to bugs where more workers are created than would be allowed by the RLIMITs of the userspace process in lieu of which workers are created. Problems like this disappear with user workers created from the userspace processes for which they perform the work. In addition, providing this api allows vhost to remove additional complexity. For example, cgroup and mm sharing will just work out of the box with user workers based on the relevant userspace process instead of manually ensuring the correct cgroup and mm contexts are used. So the vhost subsystem should simply be made to use the same mechanism as io_uring. To this end the original mechanism used for create_io_thread() is generalized into user workers: - Introduce PF_USER_WORKER as a generic indicator that a given task is a user worker, i.e., a kernel task that was created from a userspace process. Now a PF_IO_WORKER thread is just a specialized version of PF_USER_WORKER. So io_uring io workers raise both flags. - Make copy_process() available to core kernel code - Extend struct kernel_clone_args with the following bitfields allowing to indicate to copy_process(): - to create a user worker (raise PF_USER_WORKER) - to not inherit any files from the userspace process - to ignore signals After all generic changes are in place the vhost subsystem implements a new dedicated vhost api based on user workers. Finally, vhost is switched to rely on the new api moving it off of kthreads. Thanks to Mike for sticking it out and making it through this rather arduous journey" * tag 'v6.4/kernel.user_worker' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: vhost: use vhost_tasks for worker threads vhost: move worker thread fields to new struct vhost_task: Allow vhost layer to use copy_process fork: allow kernel code to call copy_process fork: Add kernel_clone_args flag to ignore signals fork: add kernel_clone_args flag to not dup/clone files fork/vm: Move common PF_IO_WORKER behavior to new flag kernel: Make io_thread and kthread bit fields kthread: Pass in the thread's name during creation kernel: Allow a kernel thread's name to be set in copy_process csky: Remove kernel_thread declaration
2023-04-24Merge tag 'rcu.6.4.april5.2023.3' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/jfern/linux Pull RCU updates from Joel Fernandes: - Updates and additions to MAINTAINERS files, with Boqun being added to the RCU entry and Zqiang being added as an RCU reviewer. I have also transitioned from reviewer to maintainer; however, Paul will be taking over sending RCU pull-requests for the next merge window. - Resolution of hotplug warning in nohz code, achieved by fixing cpu_is_hotpluggable() through interaction with the nohz subsystem. Tick dependency modifications by Zqiang, focusing on fixing usage of the TICK_DEP_BIT_RCU_EXP bitmask. - Avoid needless calls to the rcu-lazy shrinker for CONFIG_RCU_LAZY=n kernels, fixed by Zqiang. - Improvements to rcu-tasks stall reporting by Neeraj. - Initial renaming of k[v]free_rcu() to k[v]free_rcu_mightsleep() for increased robustness, affecting several components like mac802154, drbd, vmw_vmci, tracing, and more. A report by Eric Dumazet showed that the API could be unknowingly used in an atomic context, so we'd rather make sure they know what they're asking for by being explicit: https://lore.kernel.org/all/20221202052847.2623997-1-edumazet@google.com/ - Documentation updates, including corrections to spelling, clarifications in comments, and improvements to the srcu_size_state comments. - Better srcu_struct cache locality for readers, by adjusting the size of srcu_struct in support of SRCU usage by Christoph Hellwig. - Teach lockdep to detect deadlocks between srcu_read_lock() vs synchronize_srcu() contributed by Boqun. Previously lockdep could not detect such deadlocks, now it can. - Integration of rcutorture and rcu-related tools, targeted for v6.4 from Boqun's tree, featuring new SRCU deadlock scenarios, test_nmis module parameter, and more - Miscellaneous changes, various code cleanups and comment improvements * tag 'rcu.6.4.april5.2023.3' of git://git.kernel.org/pub/scm/linux/kernel/git/jfern/linux: (71 commits) checkpatch: Error out if deprecated RCU API used mac802154: Rename kfree_rcu() to kvfree_rcu_mightsleep() rcuscale: Rename kfree_rcu() to kfree_rcu_mightsleep() ext4/super: Rename kfree_rcu() to kfree_rcu_mightsleep() net/mlx5: Rename kfree_rcu() to kfree_rcu_mightsleep() net/sysctl: Rename kvfree_rcu() to kvfree_rcu_mightsleep() lib/test_vmalloc.c: Rename kvfree_rcu() to kvfree_rcu_mightsleep() tracing: Rename kvfree_rcu() to kvfree_rcu_mightsleep() misc: vmw_vmci: Rename kvfree_rcu() to kvfree_rcu_mightsleep() drbd: Rename kvfree_rcu() to kvfree_rcu_mightsleep() rcu: Protect rcu_print_task_exp_stall() ->exp_tasks access rcu: Avoid stack overflow due to __rcu_irq_enter_check_tick() being kprobe-ed rcu-tasks: Report stalls during synchronize_srcu() in rcu_tasks_postscan() rcu: Permit start_poll_synchronize_rcu_expedited() to be invoked early rcu: Remove never-set needwake assignment from rcu_report_qs_rdp() rcu: Register rcu-lazy shrinker only for CONFIG_RCU_LAZY=y kernels rcu: Fix missing TICK_DEP_MASK_RCU_EXP dependency check rcu: Fix set/clear TICK_DEP_BIT_RCU_EXP bitmask race rcu/trace: use strscpy() to instead of strncpy() tick/nohz: Fix cpu_is_hotpluggable() by checking with nohz subsystem ...
2023-04-24Merge tag 'locktorture.2023.04.04a' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu Pull locktorture updates from Paul McKenney: "This adds tests for nested locking and also adds support for testing raw spinlocks in PREEMPT_RT kernels" * tag 'locktorture.2023.04.04a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: locktorture: Add raw_spinlock* torture tests for PREEMPT_RT kernels locktorture: With nested locks, occasionally skip main lock locktorture: Add nested locking to rtmutex torture tests locktorture: Add nested locking to mutex torture tests locktorture: Add nested_[un]lock() hooks and nlocks parameter
2023-04-24Merge tag 'kcsan.2023.04.04a' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu Pull KCSAN updates from Paul McKenney: "Kernel concurrency sanitizer (KCSAN) updates for v6.4 This fixes kernel-doc warnings and also updates instrumentation from READ_ONCE() to volatile in order to avoid unaligned load-acquire instructions on arm64 in kernels built with LTO" * tag 'kcsan.2023.04.04a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: kcsan: Avoid READ_ONCE() in read_instrumented_memory() instrumented.h: Fix all kernel-doc format warnings
2023-04-21posix-cpu-timers: Implement the missing timer_wait_running callbackThomas Gleixner
For some unknown reason the introduction of the timer_wait_running callback missed to fixup posix CPU timers, which went unnoticed for almost four years. Marco reported recently that the WARN_ON() in timer_wait_running() triggers with a posix CPU timer test case. Posix CPU timers have two execution models for expiring timers depending on CONFIG_POSIX_CPU_TIMERS_TASK_WORK: 1) If not enabled, the expiry happens in hard interrupt context so spin waiting on the remote CPU is reasonably time bound. Implement an empty stub function for that case. 2) If enabled, the expiry happens in task work before returning to user space or guest mode. The expired timers are marked as firing and moved from the timer queue to a local list head with sighand lock held. Once the timers are moved, sighand lock is dropped and the expiry happens in fully preemptible context. That means the expiring task can be scheduled out, migrated, interrupted etc. So spin waiting on it is more than suboptimal. The timer wheel has a timer_wait_running() mechanism for RT, which uses a per CPU timer-base expiry lock which is held by the expiry code and the task waiting for the timer function to complete blocks on that lock. This does not work in the same way for posix CPU timers as there is no timer base and expiry for process wide timers can run on any task belonging to that process, but the concept of waiting on an expiry lock can be used too in a slightly different way: - Add a mutex to struct posix_cputimers_work. This struct is per task and used to schedule the expiry task work from the timer interrupt. - Add a task_struct pointer to struct cpu_timer which is used to store a the task which runs the expiry. That's filled in when the task moves the expired timers to the local expiry list. That's not affecting the size of the k_itimer union as there are bigger union members already - Let the task take the expiry mutex around the expiry function - Let the waiter acquire a task reference with rcu_read_lock() held and block on the expiry mutex This avoids spin-waiting on a task which might not even be on a CPU and works nicely for RT too. Fixes: ec8f954a40da ("posix-timers: Use a callback for cancel synchronization on PREEMPT_RT") Reported-by: Marco Elver <elver@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Marco Elver <elver@google.com> Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/87zg764ojw.ffs@tglx
2023-04-20cgroup_get_from_fd(): switch to fdget_raw()Al Viro
Reviewed-by: Christian Brauner <brauner@kernel.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2023-04-20bpf: switch to fdget_raw()Al Viro
Reviewed-by: Christian Brauner <brauner@kernel.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2023-04-20convert setns(2) to fdget()/fdput()Al Viro
Reviewed-by: Christian Brauner <brauner@kernel.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2023-04-20Merge tag 'net-6.3-rc8' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net Pull networking fixes from Paolo Abeni: "Including fixes from netfilter and bpf. There are a few fixes for new code bugs, including the Mellanox one noted in the last networking pull. No known regressions outstanding. Current release - regressions: - sched: clear actions pointer in miss cookie init fail - mptcp: fix accept vs worker race - bpf: fix bpf_arch_text_poke() with new_addr == NULL on s390 - eth: bnxt_en: fix a possible NULL pointer dereference in unload path - eth: veth: take into account peer device for NETDEV_XDP_ACT_NDO_XMIT xdp_features flag Current release - new code bugs: - eth: revert "net/mlx5: Enable management PF initialization" Previous releases - regressions: - netfilter: fix recent physdev match breakage - bpf: fix incorrect verifier pruning due to missing register precision taints - eth: virtio_net: fix overflow inside xdp_linearize_page() - eth: cxgb4: fix use after free bugs caused by circular dependency problem - eth: mlxsw: pci: fix possible crash during initialization Previous releases - always broken: - sched: sch_qfq: prevent slab-out-of-bounds in qfq_activate_agg - netfilter: validate catch-all set elements - bridge: don't notify FDB entries with "master dynamic" - eth: bonding: fix memory leak when changing bond type to ethernet - eth: i40e: fix accessing vsi->active_filters without holding lock Misc: - Mat is back as MPTCP co-maintainer" * tag 'net-6.3-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (33 commits) net: bridge: switchdev: don't notify FDB entries with "master dynamic" Revert "net/mlx5: Enable management PF initialization" MAINTAINERS: Resume MPTCP co-maintainer role mailmap: add entries for Mat Martineau e1000e: Disable TSO on i219-LM card to increase speed bnxt_en: fix free-runnig PHC mode net: dsa: microchip: ksz8795: Correctly handle huge frame configuration bpf: Fix incorrect verifier pruning due to missing register precision taints hamradio: drop ISA_DMA_API dependency mlxsw: pci: Fix possible crash during initialization mptcp: fix accept vs worker race mptcp: stops worker on unaccepted sockets at listener close net: rpl: fix rpl header size calculation net: vmxnet3: Fix NULL pointer dereference in vmxnet3_rq_rx_complete() bonding: Fix memory leak when changing bond type to Ethernet veth: take into account peer device for NETDEV_XDP_ACT_NDO_XMIT xdp_features flag mlxfw: fix null-ptr-deref in mlxfw_mfa2_tlv_next() bnxt_en: Fix a possible NULL pointer dereference in unload path bnxt_en: Do not initialize PTP on older P3/P4 chips netfilter: nf_tables: tighten netlink attribute requirements for catch-all elements ...
2023-04-19Merge tag 'mm-hotfixes-stable-2023-04-19-16-36' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull misc fixes from Andrew Morton: "22 hotfixes. 19 are cc:stable and the remainder address issues which were introduced during this merge cycle, or aren't considered suitable for -stable backporting. 19 are for MM and the remainder are for other subsystems" * tag 'mm-hotfixes-stable-2023-04-19-16-36' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (22 commits) nilfs2: initialize unused bytes in segment summary blocks mm: page_alloc: skip regions with hugetlbfs pages when allocating 1G pages mm/mmap: regression fix for unmapped_area{_topdown} maple_tree: fix mas_empty_area() search maple_tree: make maple state reusable after mas_empty_area_rev() mm: kmsan: handle alloc failures in kmsan_ioremap_page_range() mm: kmsan: handle alloc failures in kmsan_vmap_pages_range_noflush() tools/Makefile: do missed s/vm/mm/ mm: fix memory leak on mm_init error handling mm/page_alloc: fix potential deadlock on zonelist_update_seq seqlock kernel/sys.c: fix and improve control flow in __sys_setres[ug]id() Revert "userfaultfd: don't fail on unrecognized features" writeback, cgroup: fix null-ptr-deref write in bdi_split_work_to_wbs maple_tree: fix a potential memory leak, OOB access, or other unpredictable bug tools/mm/page_owner_sort.c: fix TGID output when cull=tg is used mailmap: update jtoppins' entry to reference correct email mm/mempolicy: fix use-after-free of VMA iterator mm/huge_memory.c: warn with pr_warn_ratelimited instead of VM_WARN_ON_ONCE_FOLIO mm/mprotect: fix do_mprotect_pkey() return on error mm/khugepaged: check again on anon uffd-wp during isolation ...
2023-04-19bpf: Fix incorrect verifier pruning due to missing register precision taintsDaniel Borkmann
Juan Jose et al reported an issue found via fuzzing where the verifier's pruning logic prematurely marks a program path as safe. Consider the following program: 0: (b7) r6 = 1024 1: (b7) r7 = 0 2: (b7) r8 = 0 3: (b7) r9 = -2147483648 4: (97) r6 %= 1025 5: (05) goto pc+0 6: (bd) if r6 <= r9 goto pc+2 7: (97) r6 %= 1 8: (b7) r9 = 0 9: (bd) if r6 <= r9 goto pc+1 10: (b7) r6 = 0 11: (b7) r0 = 0 12: (63) *(u32 *)(r10 -4) = r0 13: (18) r4 = 0xffff888103693400 // map_ptr(ks=4,vs=48) 15: (bf) r1 = r4 16: (bf) r2 = r10 17: (07) r2 += -4 18: (85) call bpf_map_lookup_elem#1 19: (55) if r0 != 0x0 goto pc+1 20: (95) exit 21: (77) r6 >>= 10 22: (27) r6 *= 8192 23: (bf) r1 = r0 24: (0f) r0 += r6 25: (79) r3 = *(u64 *)(r0 +0) 26: (7b) *(u64 *)(r1 +0) = r3 27: (95) exit The verifier treats this as safe, leading to oob read/write access due to an incorrect verifier conclusion: func#0 @0 0: R1=ctx(off=0,imm=0) R10=fp0 0: (b7) r6 = 1024 ; R6_w=1024 1: (b7) r7 = 0 ; R7_w=0 2: (b7) r8 = 0 ; R8_w=0 3: (b7) r9 = -2147483648 ; R9_w=-2147483648 4: (97) r6 %= 1025 ; R6_w=scalar() 5: (05) goto pc+0 6: (bd) if r6 <= r9 goto pc+2 ; R6_w=scalar(umin=18446744071562067969,var_off=(0xffffffff00000000; 0xffffffff)) R9_w=-2147483648 7: (97) r6 %= 1 ; R6_w=scalar() 8: (b7) r9 = 0 ; R9=0 9: (bd) if r6 <= r9 goto pc+1 ; R6=scalar(umin=1) R9=0 10: (b7) r6 = 0 ; R6_w=0 11: (b7) r0 = 0 ; R0_w=0 12: (63) *(u32 *)(r10 -4) = r0 last_idx 12 first_idx 9 regs=1 stack=0 before 11: (b7) r0 = 0 13: R0_w=0 R10=fp0 fp-8=0000???? 13: (18) r4 = 0xffff8ad3886c2a00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0 17: (07) r2 += -4 ; R2_w=fp-4 18: (85) call bpf_map_lookup_elem#1 ; R0=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) 19: (55) if r0 != 0x0 goto pc+1 ; R0=0 20: (95) exit from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm???? 21: (77) r6 >>= 10 ; R6_w=0 22: (27) r6 *= 8192 ; R6_w=0 23: (bf) r1 = r0 ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0) 24: (0f) r0 += r6 last_idx 24 first_idx 19 regs=40 stack=0 before 23: (bf) r1 = r0 regs=40 stack=0 before 22: (27) r6 *= 8192 regs=40 stack=0 before 21: (77) r6 >>= 10 regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1 parent didn't have regs=40 stack=0 marks: R0_rw=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) R6_rw=P0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm???? last_idx 18 first_idx 9 regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1 regs=40 stack=0 before 17: (07) r2 += -4 regs=40 stack=0 before 16: (bf) r2 = r10 regs=40 stack=0 before 15: (bf) r1 = r4 regs=40 stack=0 before 13: (18) r4 = 0xffff8ad3886c2a00 regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0 regs=40 stack=0 before 11: (b7) r0 = 0 regs=40 stack=0 before 10: (b7) r6 = 0 25: (79) r3 = *(u64 *)(r0 +0) ; R0_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar() 26: (7b) *(u64 *)(r1 +0) = r3 ; R1_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar() 27: (95) exit from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 11: (b7) r0 = 0 ; R0_w=0 12: (63) *(u32 *)(r10 -4) = r0 last_idx 12 first_idx 11 regs=1 stack=0 before 11: (b7) r0 = 0 13: R0_w=0 R10=fp0 fp-8=0000???? 13: (18) r4 = 0xffff8ad3886c2a00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0 17: (07) r2 += -4 ; R2_w=fp-4 18: (85) call bpf_map_lookup_elem#1 frame 0: propagating r6 last_idx 19 first_idx 11 regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1 regs=40 stack=0 before 17: (07) r2 += -4 regs=40 stack=0 before 16: (bf) r2 = r10 regs=40 stack=0 before 15: (bf) r1 = r4 regs=40 stack=0 before 13: (18) r4 = 0xffff8ad3886c2a00 regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0 regs=40 stack=0 before 11: (b7) r0 = 0 parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_r=P0 R7=0 R8=0 R9=0 R10=fp0 last_idx 9 first_idx 9 regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1 parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar() R7_w=0 R8_w=0 R9_rw=0 R10=fp0 last_idx 8 first_idx 0 regs=40 stack=0 before 8: (b7) r9 = 0 regs=40 stack=0 before 7: (97) r6 %= 1 regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2 regs=40 stack=0 before 5: (05) goto pc+0 regs=40 stack=0 before 4: (97) r6 %= 1025 regs=40 stack=0 before 3: (b7) r9 = -2147483648 regs=40 stack=0 before 2: (b7) r8 = 0 regs=40 stack=0 before 1: (b7) r7 = 0 regs=40 stack=0 before 0: (b7) r6 = 1024 19: safe frame 0: propagating r6 last_idx 9 first_idx 0 regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2 regs=40 stack=0 before 5: (05) goto pc+0 regs=40 stack=0 before 4: (97) r6 %= 1025 regs=40 stack=0 before 3: (b7) r9 = -2147483648 regs=40 stack=0 before 2: (b7) r8 = 0 regs=40 stack=0 before 1: (b7) r7 = 0 regs=40 stack=0 before 0: (b7) r6 = 1024 from 6 to 9: safe verification time 110 usec stack depth 4 processed 36 insns (limit 1000000) max_states_per_insn 0 total_states 3 peak_states 3 mark_read 2 The verifier considers this program as safe by mistakenly pruning unsafe code paths. In the above func#0, code lines 0-10 are of interest. In line 0-3 registers r6 to r9 are initialized with known scalar values. In line 4 the register r6 is reset to an unknown scalar given the verifier does not track modulo operations. Due to this, the verifier can also not determine precisely which branches in line 6 and 9 are taken, therefore it needs to explore them both. As can be seen, the verifier starts with exploring the false/fall-through paths first. The 'from 19 to 21' path has both r6=0 and r9=0 and the pointer arithmetic on r0 += r6 is therefore considered safe. Given the arithmetic, r6 is correctly marked for precision tracking where backtracking kicks in where it walks back the current path all the way where r6 was set to 0 in the fall-through branch. Next, the pruning logics pops the path 'from 9 to 11' from the stack. Also here, the state of the registers is the same, that is, r6=0 and r9=0, so that at line 19 the path can be pruned as it is considered safe. It is interesting to note that the conditional in line 9 turned r6 into a more precise state, that is, in the fall-through path at the beginning of line 10, it is R6=scalar(umin=1), and in the branch-taken path (which is analyzed here) at the beginning of line 11, r6 turned into a known const r6=0 as r9=0 prior to that and therefore (unsigned) r6 <= 0 concludes that r6 must be 0 (**): [...] ; R6_w=scalar() 9: (bd) if r6 <= r9 goto pc+1 ; R6=scalar(umin=1) R9=0 [...] from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 [...] The next path is 'from 6 to 9'. The verifier considers the old and current state equivalent, and therefore prunes the search incorrectly. Looking into the two states which are being compared by the pruning logic at line 9, the old state consists of R6_rwD=Pscalar() R9_rwD=0 R10=fp0 and the new state consists of R1=ctx(off=0,imm=0) R6_w=scalar(umax=18446744071562067968) R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0. While r6 had the reg->precise flag correctly set in the old state, r9 did not. Both r6'es are considered as equivalent given the old one is a superset of the current, more precise one, however, r9's actual values (0 vs 0x80000000) mismatch. Given the old r9 did not have reg->precise flag set, the verifier does not consider the register as contributing to the precision state of r6, and therefore it considered both r9 states as equivalent. However, for this specific pruned path (which is also the actual path taken at runtime), register r6 will be 0x400 and r9 0x80000000 when reaching line 21, thus oob-accessing the map. The purpose of precision tracking is to initially mark registers (including spilled ones) as imprecise to help verifier's pruning logic finding equivalent states it can then prune if they don't contribute to the program's safety aspects. For example, if registers are used for pointer arithmetic or to pass constant length to a helper, then the verifier sets reg->precise flag and backtracks the BPF program instruction sequence and chain of verifier states to ensure that the given register or stack slot including their dependencies are marked as precisely tracked scalar. This also includes any other registers and slots that contribute to a tracked state of given registers/stack slot. This backtracking relies on recorded jmp_history and is able to traverse entire chain of parent states. This process ends only when all the necessary registers/slots and their transitive dependencies are marked as precise. The backtrack_insn() is called from the current instruction up to the first instruction, and its purpose is to compute a bitmask of registers and stack slots that need precision tracking in the parent's verifier state. For example, if a current instruction is r6 = r7, then r6 needs precision after this instruction and r7 needs precision before this instruction, that is, in the parent state. Hence for the latter r7 is marked and r6 unmarked. For the class of jmp/jmp32 instructions, backtrack_insn() today only looks at call and exit instructions and for all other conditionals the masks remain as-is. However, in the given situation register r6 has a dependency on r9 (as described above in **), so also that one needs to be marked for precision tracking. In other words, if an imprecise register influences a precise one, then the imprecise register should also be marked precise. Meaning, in the parent state both dest and src register need to be tracked for precision and therefore the marking must be more conservative by setting reg->precise flag for both. The precision propagation needs to cover both for the conditional: if the src reg was marked but not the dst reg and vice versa. After the fix the program is correctly rejected: func#0 @0 0: R1=ctx(off=0,imm=0) R10=fp0 0: (b7) r6 = 1024 ; R6_w=1024 1: (b7) r7 = 0 ; R7_w=0 2: (b7) r8 = 0 ; R8_w=0 3: (b7) r9 = -2147483648 ; R9_w=-2147483648 4: (97) r6 %= 1025 ; R6_w=scalar() 5: (05) goto pc+0 6: (bd) if r6 <= r9 goto pc+2 ; R6_w=scalar(umin=18446744071562067969,var_off=(0xffffffff80000000; 0x7fffffff),u32_min=-2147483648) R9_w=-2147483648 7: (97) r6 %= 1 ; R6_w=scalar() 8: (b7) r9 = 0 ; R9=0 9: (bd) if r6 <= r9 goto pc+1 ; R6=scalar(umin=1) R9=0 10: (b7) r6 = 0 ; R6_w=0 11: (b7) r0 = 0 ; R0_w=0 12: (63) *(u32 *)(r10 -4) = r0 last_idx 12 first_idx 9 regs=1 stack=0 before 11: (b7) r0 = 0 13: R0_w=0 R10=fp0 fp-8=0000???? 13: (18) r4 = 0xffff9290dc5bfe00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0 17: (07) r2 += -4 ; R2_w=fp-4 18: (85) call bpf_map_lookup_elem#1 ; R0=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) 19: (55) if r0 != 0x0 goto pc+1 ; R0=0 20: (95) exit from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm???? 21: (77) r6 >>= 10 ; R6_w=0 22: (27) r6 *= 8192 ; R6_w=0 23: (bf) r1 = r0 ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0) 24: (0f) r0 += r6 last_idx 24 first_idx 19 regs=40 stack=0 before 23: (bf) r1 = r0 regs=40 stack=0 before 22: (27) r6 *= 8192 regs=40 stack=0 before 21: (77) r6 >>= 10 regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1 parent didn't have regs=40 stack=0 marks: R0_rw=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) R6_rw=P0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm???? last_idx 18 first_idx 9 regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1 regs=40 stack=0 before 17: (07) r2 += -4 regs=40 stack=0 before 16: (bf) r2 = r10 regs=40 stack=0 before 15: (bf) r1 = r4 regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00 regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0 regs=40 stack=0 before 11: (b7) r0 = 0 regs=40 stack=0 before 10: (b7) r6 = 0 25: (79) r3 = *(u64 *)(r0 +0) ; R0_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar() 26: (7b) *(u64 *)(r1 +0) = r3 ; R1_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar() 27: (95) exit from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 11: (b7) r0 = 0 ; R0_w=0 12: (63) *(u32 *)(r10 -4) = r0 last_idx 12 first_idx 11 regs=1 stack=0 before 11: (b7) r0 = 0 13: R0_w=0 R10=fp0 fp-8=0000???? 13: (18) r4 = 0xffff9290dc5bfe00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0 17: (07) r2 += -4 ; R2_w=fp-4 18: (85) call bpf_map_lookup_elem#1 frame 0: propagating r6 last_idx 19 first_idx 11 regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1 regs=40 stack=0 before 17: (07) r2 += -4 regs=40 stack=0 before 16: (bf) r2 = r10 regs=40 stack=0 before 15: (bf) r1 = r4 regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00 regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0 regs=40 stack=0 before 11: (b7) r0 = 0 parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_r=P0 R7=0 R8=0 R9=0 R10=fp0 last_idx 9 first_idx 9 regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1 parent didn't have regs=240 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar() R7_w=0 R8_w=0 R9_rw=P0 R10=fp0 last_idx 8 first_idx 0 regs=240 stack=0 before 8: (b7) r9 = 0 regs=40 stack=0 before 7: (97) r6 %= 1 regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2 regs=240 stack=0 before 5: (05) goto pc+0 regs=240 stack=0 before 4: (97) r6 %= 1025 regs=240 stack=0 before 3: (b7) r9 = -2147483648 regs=40 stack=0 before 2: (b7) r8 = 0 regs=40 stack=0 before 1: (b7) r7 = 0 regs=40 stack=0 before 0: (b7) r6 = 1024 19: safe from 6 to 9: R1=ctx(off=0,imm=0) R6_w=scalar(umax=18446744071562067968) R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0 9: (bd) if r6 <= r9 goto pc+1 last_idx 9 first_idx 0 regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2 regs=240 stack=0 before 5: (05) goto pc+0 regs=240 stack=0 before 4: (97) r6 %= 1025 regs=240 stack=0 before 3: (b7) r9 = -2147483648 regs=40 stack=0 before 2: (b7) r8 = 0 regs=40 stack=0 before 1: (b7) r7 = 0 regs=40 stack=0 before 0: (b7) r6 = 1024 last_idx 9 first_idx 0 regs=200 stack=0 before 6: (bd) if r6 <= r9 goto pc+2 regs=240 stack=0 before 5: (05) goto pc+0 regs=240 stack=0 before 4: (97) r6 %= 1025 regs=240 stack=0 before 3: (b7) r9 = -2147483648 regs=40 stack=0 before 2: (b7) r8 = 0 regs=40 stack=0 before 1: (b7) r7 = 0 regs=40 stack=0 before 0: (b7) r6 = 1024 11: R6=scalar(umax=18446744071562067968) R9=-2147483648 11: (b7) r0 = 0 ; R0_w=0 12: (63) *(u32 *)(r10 -4) = r0 last_idx 12 first_idx 11 regs=1 stack=0 before 11: (b7) r0 = 0 13: R0_w=0 R10=fp0 fp-8=0000???? 13: (18) r4 = 0xffff9290dc5bfe00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0 17: (07) r2 += -4 ; R2_w=fp-4 18: (85) call bpf_map_lookup_elem#1 ; R0_w=map_value_or_null(id=3,off=0,ks=4,vs=48,imm=0) 19: (55) if r0 != 0x0 goto pc+1 ; R0_w=0 20: (95) exit from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=scalar(umax=18446744071562067968) R7=0 R8=0 R9=-2147483648 R10=fp0 fp-8=mmmm???? 21: (77) r6 >>= 10 ; R6_w=scalar(umax=18014398507384832,var_off=(0x0; 0x3fffffffffffff)) 22: (27) r6 *= 8192 ; R6_w=scalar(smax=9223372036854767616,umax=18446744073709543424,var_off=(0x0; 0xffffffffffffe000),s32_max=2147475456,u32_max=-8192) 23: (bf) r1 = r0 ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0) 24: (0f) r0 += r6 last_idx 24 first_idx 21 regs=40 stack=0 before 23: (bf) r1 = r0 regs=40 stack=0 before 22: (27) r6 *= 8192 regs=40 stack=0 before 21: (77) r6 >>= 10 parent didn't have regs=40 stack=0 marks: R0_rw=map_value(off=0,ks=4,vs=48,imm=0) R6_r=Pscalar(umax=18446744071562067968) R7=0 R8=0 R9=-2147483648 R10=fp0 fp-8=mmmm???? last_idx 19 first_idx 11 regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1 regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1 regs=40 stack=0 before 17: (07) r2 += -4 regs=40 stack=0 before 16: (bf) r2 = r10 regs=40 stack=0 before 15: (bf) r1 = r4 regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00 regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0 regs=40 stack=0 before 11: (b7) r0 = 0 parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar(umax=18446744071562067968) R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0 last_idx 9 first_idx 0 regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1 regs=240 stack=0 before 6: (bd) if r6 <= r9 goto pc+2 regs=240 stack=0 before 5: (05) goto pc+0 regs=240 stack=0 before 4: (97) r6 %= 1025 regs=240 stack=0 before 3: (b7) r9 = -2147483648 regs=40 stack=0 before 2: (b7) r8 = 0 regs=40 stack=0 before 1: (b7) r7 = 0 regs=40 stack=0 before 0: (b7) r6 = 1024 math between map_value pointer and register with unbounded min value is not allowed verification time 886 usec stack depth 4 processed 49 insns (limit 1000000) max_states_per_insn 1 total_states 5 peak_states 5 mark_read 2 Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking") Reported-by: Juan Jose Lopez Jaimez <jjlopezjaimez@google.com> Reported-by: Meador Inge <meadori@google.com> Reported-by: Simon Scannell <simonscannell@google.com> Reported-by: Nenad Stojanovski <thenenadx@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Co-developed-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Reviewed-by: Juan Jose Lopez Jaimez <jjlopezjaimez@google.com> Reviewed-by: Meador Inge <meadori@google.com> Reviewed-by: Simon Scannell <simonscannell@google.com>
2023-04-18mm: fix memory leak on mm_init error handlingMathieu Desnoyers
commit f1a7941243c1 ("mm: convert mm's rss stats into percpu_counter") introduces a memory leak by missing a call to destroy_context() when a percpu_counter fails to allocate. Before introducing the per-cpu counter allocations, init_new_context() was the last call that could fail in mm_init(), and thus there was no need to ever invoke destroy_context() in the error paths. Adding the following percpu counter allocations adds error paths after init_new_context(), which means its associated destroy_context() needs to be called when percpu counters fail to allocate. Link: https://lkml.kernel.org/r/20230330133822.66271-1-mathieu.desnoyers@efficios.com Fixes: f1a7941243c1 ("mm: convert mm's rss stats into percpu_counter") Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Shakeel Butt <shakeelb@google.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-18kernel/sys.c: fix and improve control flow in __sys_setres[ug]id()Ondrej Mosnacek
Linux Security Modules (LSMs) that implement the "capable" hook will usually emit an access denial message to the audit log whenever they "block" the current task from using the given capability based on their security policy. The occurrence of a denial is used as an indication that the given task has attempted an operation that requires the given access permission, so the callers of functions that perform LSM permission checks must take care to avoid calling them too early (before it is decided if the permission is actually needed to perform the requested operation). The __sys_setres[ug]id() functions violate this convention by first calling ns_capable_setid() and only then checking if the operation requires the capability or not. It means that any caller that has the capability granted by DAC (task's capability set) but not by MAC (LSMs) will generate a "denied" audit record, even if is doing an operation for which the capability is not required. Fix this by reordering the checks such that ns_capable_setid() is checked last and -EPERM is returned immediately if it returns false. While there, also do two small optimizations: * move the capability check before prepare_creds() and * bail out early in case of a no-op. Link: https://lkml.kernel.org/r/20230217162154.837549-1-omosnace@redhat.com Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-18timers/nohz: Remove middle-function __tick_nohz_idle_stop_tick()Frederic Weisbecker
There is no need for the __tick_nohz_idle_stop_tick() function between tick_nohz_idle_stop_tick() and its implementation. Remove that unnecessary step. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230222144649.624380-6-frederic@kernel.org
2023-04-18timers/nohz: Add a comment about broken iowait counter update raceFrederic Weisbecker
The per-cpu iowait task counter is incremented locally upon sleeping. But since the task can be woken to (and by) another CPU, the counter may then be decremented remotely. This is the source of a race involving readers VS writer of idle/iowait sleeptime. The following scenario shows an example where a /proc/stat reader observes a pending sleep time as IO whereas that pending sleep time later eventually gets accounted as non-IO. CPU 0 CPU 1 CPU 2 ----- ----- ------ //io_schedule() TASK A current->in_iowait = 1 rq(0)->nr_iowait++ //switch to idle // READ /proc/stat // See nr_iowait_cpu(0) == 1 return ts->iowait_sleeptime + ktime_sub(ktime_get(), ts->idle_entrytime) //try_to_wake_up(TASK A) rq(0)->nr_iowait-- //idle exit // See nr_iowait_cpu(0) == 0 ts->idle_sleeptime += ktime_sub(ktime_get(), ts->idle_entrytime) As a result subsequent reads on /proc/stat may expose backward progress. This is unfortunately hardly fixable. Just add a comment about that condition. Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230222144649.624380-5-frederic@kernel.org
2023-04-18timers/nohz: Protect idle/iowait sleep time under seqcountFrederic Weisbecker
Reading idle/IO sleep time (eg: from /proc/stat) can race with idle exit updates because the state machine handling the stats is not atomic and requires a coherent read batch. As a result reading the sleep time may report irrelevant or backward values. Fix this with protecting the simple state machine within a seqcount. This is expected to be cheap enough not to add measurable performance impact on the idle path. Note this only fixes reader VS writer condition partitially. A race remains that involves remote updates of the CPU iowait task counter. It can hardly be fixed. Reported-by: Yu Liao <liaoyu15@huawei.com> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230222144649.624380-4-frederic@kernel.org
2023-04-18timers/nohz: Only ever update sleeptime from idle exitFrederic Weisbecker
The idle and IO sleeptime statistics appearing in /proc/stat can be currently updated from two sites: locally on idle exit and remotely by cpufreq. However there is no synchronization mechanism protecting concurrent updates. It is therefore possible to account the sleeptime twice, among all the other possible broken scenarios. To prevent from breaking the sleeptime accounting source, restrict the sleeptime updates to the local idle exit site. If there is a delta to add since the last update, IO/Idle sleep time readers will now only compute the delta without actually writing it back to the internal idle statistic fields. This fixes a writer VS writer race. Note there are still two known reader VS writer races to handle. A subsequent patch will fix one. Reported-by: Yu Liao <liaoyu15@huawei.com> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230222144649.624380-3-frederic@kernel.org
2023-04-18timers/nohz: Restructure and reshuffle struct tick_schedFrederic Weisbecker
Restructure and group fields by access in order to optimize cache layout. While at it, also add missing kernel doc for two fields: @last_jiffies and @idle_expires. Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230222144649.624380-2-frederic@kernel.org
2023-04-18tick/common: Align tick period with the HZ tick.Sebastian Andrzej Siewior
With HIGHRES enabled tick_sched_timer() is programmed every jiffy to expire the timer_list timers. This timer is programmed accurate in respect to CLOCK_MONOTONIC so that 0 seconds and nanoseconds is the first tick and the next one is 1000/CONFIG_HZ ms later. For HZ=250 it is every 4 ms and so based on the current time the next tick can be computed. This accuracy broke since the commit mentioned below because the jiffy based clocksource is initialized with higher accuracy in read_persistent_wall_and_boot_offset(). This higher accuracy is inherited during the setup in tick_setup_device(). The timer still fires every 4ms with HZ=250 but timer is no longer aligned with CLOCK_MONOTONIC with 0 as it origin but has an offset in the us/ns part of the timestamp. The offset differs with every boot and makes it impossible for user land to align with the tick. Align the tick period with CLOCK_MONOTONIC ensuring that it is always a multiple of 1000/CONFIG_HZ ms. Fixes: 857baa87b6422 ("sched/clock: Enable sched clock early") Reported-by: Gusenleitner Klaus <gus@keba.com> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/20230406095735.0_14edn3@linutronix.de Link: https://lore.kernel.org/r/20230418122639.ikgfvu3f@linutronix.de
2023-04-16Merge tag 'sched_urgent_for_v6.3_rc7' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fix from Borislav Petkov: - Do not pull tasks to the local scheduling group if its average load is higher than the average system load * tag 'sched_urgent_for_v6.3_rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/fair: Fix imbalance overflow
2023-04-16ptrace: Provide set/get interface for syscall user dispatchGregory Price
The syscall user dispatch configuration can only be set by the task itself, but lacks a ptrace set/get interface which makes it impossible to implement checkpoint/restore for it. Add the required ptrace requests and the get/set functions in the syscall user dispatch code to make that possible. Signed-off-by: Gregory Price <gregory.price@memverge.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lore.kernel.org/r/20230407171834.3558-4-gregory.price@memverge.com
2023-04-16syscall_user_dispatch: Untag selector address before access_ok()Gregory Price
To support checkpoint/restart, ptrace must be able to set the selector of the tracee. The selector is a user pointer that may be subject to memory tagging extensions on some architectures (namely ARM MTE). access_ok() clears memory tags for tagged addresses if the current task has memory tagging enabled. This obviously fails when ptrace modifies the selector of a tracee when tracer and tracee do not have the same memory tagging enabled state. Solve this by untagging the selector address before handing it to access_ok(), like other ptrace functions which modify tracee pointers do. Obviously a tracer can set an invalid selector address for the tracee, but that's independent of tagging and a general capability of the tracer. Suggested-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Gregory Price <gregory.price@memverge.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Link: https://lore.kernel.org/all/ZCWXE04nLZ4pXEtM@arm.com/ Link: https://lore.kernel.org/r/20230407171834.3558-3-gregory.price@memverge.com
2023-04-16syscall_user_dispatch: Split up set_syscall_user_dispatch()Gregory Price
syscall user dispatch configuration is not covered by checkpoint/restore. To prepare for ptrace access to the syscall user dispatch configuration, move the inner working of set_syscall_user_dispatch() into a helper function. Make the helper function task pointer based and let set_syscall_user_dispatch() invoke it with task=current. No functional change. Signed-off-by: Gregory Price <gregory.price@memverge.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lore.kernel.org/r/20230407171834.3558-2-gregory.price@memverge.com
2023-04-16posix-timers: Prefer delivery of signals to the current threadDmitry Vyukov
POSIX timers using the CLOCK_PROCESS_CPUTIME_ID clock prefer the main thread of a thread group for signal delivery. However, this has a significant downside: it requires waking up a potentially idle thread. Instead, prefer to deliver signals to the current thread (in the same thread group) if SIGEV_THREAD_ID is not set by the user. This does not change guaranteed semantics, since POSIX process CPU time timers have never guaranteed that signal delivery is to a specific thread (without SIGEV_THREAD_ID set). The effect is that queueing the signal no longer wakes up potentially idle threads, and the kernel is no longer biased towards delivering the timer signal to any particular thread (which better distributes the timer signals esp. when multiple timers fire concurrently). Suggested-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20230316123028.2890338-1-elver@google.com
2023-04-15genirq: Update affinity of secondary threadsJohn Keeping
For interrupts with secondary threads, the affinity is applied when the thread is created but if the interrupts affinity is changed later only the primary thread is updated. Update the secondary thread's affinity as well to keep all the interrupts activity on the assigned CPUs. Signed-off-by: John Keeping <john@metanate.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20230406180857.588682-1-john@metanate.com
2023-04-15softirq: Add trace points for tasklet entry/exitLingutla Chandrasekhar
Tasklets are supposed to finish their work quickly and should not block the current running process, but it is not guaranteed that they do so. Currently softirq_entry/exit can be used to analyse the total tasklets execution time, but that's not helpful to track individual tasklets execution time. That makes it hard to identify tasklet functions, which take more time than expected. Add tasklet_entry/exit trace point support to track individual tasklet execution. Trivial usage example: # echo 1 > /sys/kernel/debug/tracing/events/irq/tasklet_entry/enable # echo 1 > /sys/kernel/debug/tracing/events/irq/tasklet_exit/enable # cat /sys/kernel/debug/tracing/trace # tracer: nop # # entries-in-buffer/entries-written: 4/4 #P:4 # # _-----=> irqs-off/BH-disabled # / _----=> need-resched # | / _---=> hardirq/softirq # || / _--=> preempt-depth # ||| / _-=> migrate-disable # |||| / delay # TASK-PID CPU# ||||| TIMESTAMP FUNCTION # | | | ||||| | | <idle>-0 [003] ..s1. 314.011428: tasklet_entry: tasklet=0xffffa01ef8db2740 function=tcp_tasklet_func <idle>-0 [003] ..s1. 314.011432: tasklet_exit: tasklet=0xffffa01ef8db2740 function=tcp_tasklet_func <idle>-0 [003] ..s1. 314.017369: tasklet_entry: tasklet=0xffffa01ef8db2740 function=tcp_tasklet_func <idle>-0 [003] ..s1. 314.017371: tasklet_exit: tasklet=0xffffa01ef8db2740 function=tcp_tasklet_func Signed-off-by: Lingutla Chandrasekhar <clingutla@codeaurora.org> Signed-off-by: J. Avila <elavila@google.com> Signed-off-by: John Stultz <jstultz@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Link: https://lore.kernel.org/r/20230407230526.1685443-1-jstultz@google.com [elavila: Port to android-mainline] [jstultz: Rebased to upstream, cut unused trace points, added comments for the tracepoints, reworded commit]
2023-04-13Merge tag 'cgroup-for-6.3-rc6-fixes' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup fixes from Tejun Heo: "This is a relatively big pull request this late in the cycle but the major contributor is the cpuset bug which is rather significant: - Fix several cpuset bugs including one where it wasn't applying the target cgroup when tasks are created with CLONE_INTO_CGROUP With a few smaller fixes: - Fix inversed locking order in cgroup1 freezer implementation - Fix garbage cpu.stat::core_sched.forceidle_usec reporting in the root cgroup" * tag 'cgroup-for-6.3-rc6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup/cpuset: Make cpuset_attach_task() skip subpartitions CPUs for top_cpuset cgroup/cpuset: Add cpuset_can_fork() and cpuset_cancel_fork() methods cgroup/cpuset: Make cpuset_fork() handle CLONE_INTO_CGROUP properly cgroup/cpuset: Wake up cpuset_attach_wq tasks in cpuset_cancel_attach() cgroup,freezer: hold cpu_hotplug_lock before freezer_mutex cgroup/cpuset: Fix partition root's cpuset.cpus update bug cgroup: fix display of forceidle time at root
2023-04-12cgroup/cpuset: Make cpuset_attach_task() skip subpartitions CPUs for top_cpusetWaiman Long
It is found that attaching a task to the top_cpuset does not currently ignore CPUs allocated to subpartitions in cpuset_attach_task(). So the code is changed to fix that. Signed-off-by: Waiman Long <longman@redhat.com> Reviewed-by: Michal Koutný <mkoutny@suse.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2023-04-12cgroup/cpuset: Add cpuset_can_fork() and cpuset_cancel_fork() methodsWaiman Long
In the case of CLONE_INTO_CGROUP, not all cpusets are ready to accept new tasks. It is too late to check that in cpuset_fork(). So we need to add the cpuset_can_fork() and cpuset_cancel_fork() methods to pre-check it before we can allow attachment to a different cpuset. We also need to set the attach_in_progress flag to alert other code that a new task is going to be added to the cpuset. Fixes: ef2c41cf38a7 ("clone3: allow spawning processes into cgroups") Suggested-by: Michal Koutný <mkoutny@suse.com> Signed-off-by: Waiman Long <longman@redhat.com> Cc: stable@vger.kernel.org # v5.7+ Signed-off-by: Tejun Heo <tj@kernel.org>
2023-04-12cgroup/cpuset: Make cpuset_fork() handle CLONE_INTO_CGROUP properlyWaiman Long
By default, the clone(2) syscall spawn a child process into the same cgroup as its parent. With the use of the CLONE_INTO_CGROUP flag introduced by commit ef2c41cf38a7 ("clone3: allow spawning processes into cgroups"), the child will be spawned into a different cgroup which is somewhat similar to writing the child's tid into "cgroup.threads". The current cpuset_fork() method does not properly handle the CLONE_INTO_CGROUP case where the cpuset of the child may be different from that of its parent. Update the cpuset_fork() method to treat the CLONE_INTO_CGROUP case similar to cpuset_attach(). Since the newly cloned task has not been running yet, its actual memory usage isn't known. So it is not necessary to make change to mm in cpuset_fork(). Fixes: ef2c41cf38a7 ("clone3: allow spawning processes into cgroups") Reported-by: Giuseppe Scrivano <gscrivan@redhat.com> Signed-off-by: Waiman Long <longman@redhat.com> Cc: stable@vger.kernel.org # v5.7+ Signed-off-by: Tejun Heo <tj@kernel.org>
2023-04-12cgroup/cpuset: Wake up cpuset_attach_wq tasks in cpuset_cancel_attach()Waiman Long
After a successful cpuset_can_attach() call which increments the attach_in_progress flag, either cpuset_cancel_attach() or cpuset_attach() will be called later. In cpuset_attach(), tasks in cpuset_attach_wq, if present, will be woken up at the end. That is not the case in cpuset_cancel_attach(). So missed wakeup is possible if the attach operation is somehow cancelled. Fix that by doing the wakeup in cpuset_cancel_attach() as well. Fixes: e44193d39e8d ("cpuset: let hotplug propagation work wait for task attaching") Signed-off-by: Waiman Long <longman@redhat.com> Reviewed-by: Michal Koutný <mkoutny@suse.com> Cc: stable@vger.kernel.org # v3.11+ Signed-off-by: Tejun Heo <tj@kernel.org>
2023-04-12cgroup,freezer: hold cpu_hotplug_lock before freezer_mutexTetsuo Handa
syzbot is reporting circular locking dependency between cpu_hotplug_lock and freezer_mutex, for commit f5d39b020809 ("freezer,sched: Rewrite core freezer logic") replaced atomic_inc() in freezer_apply_state() with static_branch_inc() which holds cpu_hotplug_lock. cpu_hotplug_lock => cgroup_threadgroup_rwsem => freezer_mutex cgroup_file_write() { cgroup_procs_write() { __cgroup_procs_write() { cgroup_procs_write_start() { cgroup_attach_lock() { cpus_read_lock() { percpu_down_read(&cpu_hotplug_lock); } percpu_down_write(&cgroup_threadgroup_rwsem); } } cgroup_attach_task() { cgroup_migrate() { cgroup_migrate_execute() { freezer_attach() { mutex_lock(&freezer_mutex); (...snipped...) } } } } (...snipped...) } } } freezer_mutex => cpu_hotplug_lock cgroup_file_write() { freezer_write() { freezer_change_state() { mutex_lock(&freezer_mutex); freezer_apply_state() { static_branch_inc(&freezer_active) { static_key_slow_inc() { cpus_read_lock(); static_key_slow_inc_cpuslocked(); cpus_read_unlock(); } } } mutex_unlock(&freezer_mutex); } } } Swap locking order by moving cpus_read_lock() in freezer_apply_state() to before mutex_lock(&freezer_mutex) in freezer_change_state(). Reported-by: syzbot <syzbot+c39682e86c9d84152f93@syzkaller.appspotmail.com> Link: https://syzkaller.appspot.com/bug?extid=c39682e86c9d84152f93 Suggested-by: Hillf Danton <hdanton@sina.com> Fixes: f5d39b020809 ("freezer,sched: Rewrite core freezer logic") Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2023-04-12sched/fair: Fix imbalance overflowVincent Guittot
When local group is fully busy but its average load is above system load, computing the imbalance will overflow and local group is not the best target for pulling this load. Fixes: 0b0695f2b34a ("sched/fair: Rework load_balance()") Reported-by: Tingjia Cao <tjcao980311@gmail.com> Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Tingjia Cao <tjcao980311@gmail.com> Link: https://lore.kernel.org/lkml/CABcWv9_DAhVBOq2=W=2ypKE9dKM5s2DvoV8-U0+GDwwuKZ89jQ@mail.gmail.com/T/
2023-04-10Merge tag 'urgent-rcu.2023.04.07a' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu Pull RCU fix from Paul McKenney: "This fixes a pair of bugs in which an improbable but very real sequence of events can cause kfree_rcu() to be a bit too quick about freeing the memory passed to it. It turns out that this pair of bugs is about two years old, and so this is not a v6.3 regression. However: (1) It just started showing up in the wild and (2) Its consequences are dire, so its fix needs to go in sooner rather than later. Testing is of course being upgraded, and the upgraded tests detect this situation very quickly. But to the best of my knowledge right now, the tests are not particularly urgent and will thus most likely show up in the v6.5 merge window (the one after this coming one). Kudos to Ziwei Dai and his group for tracking this one down the hard way!" * tag 'urgent-rcu.2023.04.07a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: rcu/kvfree: Avoid freeing new kfree_rcu() memory after old grace period
2023-04-09Merge tag 'perf_urgent_for_v6.3_rc6' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf fixes from Borislav Petkov: - Fix "same task" check when redirecting event output - Do not wait unconditionally for RCU on the event migration path if there are no events to migrate * tag 'perf_urgent_for_v6.3_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf/core: Fix the same task check in perf_event_set_output perf: Optimize perf_pmu_migrate_context()
2023-04-08Merge tag 'dma-mapping-6.3-2023-04-08' of ↵Linus Torvalds
git://git.infradead.org/users/hch/dma-mapping Pull dma-mapping fix from Christoph Hellwig: - fix a braino in the swiotlb alignment check fix (Petr Tesarik) * tag 'dma-mapping-6.3-2023-04-08' of git://git.infradead.org/users/hch/dma-mapping: swiotlb: fix a braino in the alignment check fix
2023-04-08Merge tag 'trace-v6.3-rc5-2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull tracing fixes from Steven Rostedt: "A couple more minor fixes: - Reset direct->addr back to its original value on error in updating the direct trampoline code - Make lastcmd_mutex static" * tag 'trace-v6.3-rc5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: tracing/synthetic: Make lastcmd_mutex static ftrace: Fix issue that 'direct->addr' not restored in modify_ftrace_direct()
2023-04-08Merge tag 'mm-hotfixes-stable-2023-04-07-16-23' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM fixes from Andrew Morton: "28 hotfixes. 23 are cc:stable and the other five address issues which were introduced during this merge cycle. 20 are for MM and the remainder are for other subsystems" * tag 'mm-hotfixes-stable-2023-04-07-16-23' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (28 commits) maple_tree: fix a potential concurrency bug in RCU mode maple_tree: fix get wrong data_end in mtree_lookup_walk() mm/swap: fix swap_info_struct race between swapoff and get_swap_pages() nilfs2: fix sysfs interface lifetime mm: take a page reference when removing device exclusive entries mm: vmalloc: avoid warn_alloc noise caused by fatal signal nilfs2: initialize "struct nilfs_binfo_dat"->bi_pad field nilfs2: fix potential UAF of struct nilfs_sc_info in nilfs_segctor_thread() zsmalloc: document freeable stats zsmalloc: document new fullness grouping fsdax: force clear dirty mark if CoW mm/hugetlb: fix uffd wr-protection for CoW optimization path mm: enable maple tree RCU mode by default maple_tree: add RCU lock checking to rcu callback functions maple_tree: add smp_rmb() to dead node detection maple_tree: fix write memory barrier of nodes once dead for RCU mode maple_tree: remove extra smp_wmb() from mas_dead_leaves() maple_tree: fix freeing of nodes in rcu mode maple_tree: detect dead nodes in mas_start() maple_tree: be more cautious about dead nodes ...
2023-04-06tracing/synthetic: Make lastcmd_mutex staticSteven Rostedt (Google)
The lastcmd_mutex is only used in trace_events_synth.c and should be static. Link: https://lore.kernel.org/linux-trace-kernel/202304062033.cRStgOuP-lkp@intel.com/ Link: https://lore.kernel.org/linux-trace-kernel/20230406111033.6e26de93@gandalf.local.home Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Tze-nan Wu <Tze-nan.Wu@mediatek.com> Fixes: 4ccf11c4e8a8e ("tracing/synthetic: Fix races on freeing last_cmd") Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-04-06rcu/kvfree: Avoid freeing new kfree_rcu() memory after old grace periodZiwei Dai
Memory passed to kvfree_rcu() that is to be freed is tracked by a per-CPU kfree_rcu_cpu structure, which in turn contains pointers to kvfree_rcu_bulk_data structures that contain pointers to memory that has not yet been handed to RCU, along with an kfree_rcu_cpu_work structure that tracks the memory that has already been handed to RCU. These structures track three categories of memory: (1) Memory for kfree(), (2) Memory for kvfree(), and (3) Memory for both that arrived during an OOM episode. The first two categories are tracked in a cache-friendly manner involving a dynamically allocated page of pointers (the aforementioned kvfree_rcu_bulk_data structures), while the third uses a simple (but decidedly cache-unfriendly) linked list through the rcu_head structures in each block of memory. On a given CPU, these three categories are handled as a unit, with that CPU's kfree_rcu_cpu_work structure having one pointer for each of the three categories. Clearly, new memory for a given category cannot be placed in the corresponding kfree_rcu_cpu_work structure until any old memory has had its grace period elapse and thus has been removed. And the kfree_rcu_monitor() function does in fact check for this. Except that the kfree_rcu_monitor() function checks these pointers one at a time. This means that if the previous kfree_rcu() memory passed to RCU had only category 1 and the current one has only category 2, the kfree_rcu_monitor() function will send that current category-2 memory along immediately. This can result in memory being freed too soon, that is, out from under unsuspecting RCU readers. To see this, consider the following sequence of events, in which: o Task A on CPU 0 calls rcu_read_lock(), then uses "from_cset", then is preempted. o CPU 1 calls kfree_rcu(cset, rcu_head) in order to free "from_cset" after a later grace period. Except that "from_cset" is freed right after the previous grace period ended, so that "from_cset" is immediately freed. Task A resumes and references "from_cset"'s member, after which nothing good happens. In full detail: CPU 0 CPU 1 ---------------------- ---------------------- count_memcg_event_mm() |rcu_read_lock() <--- |mem_cgroup_from_task() |// css_set_ptr is the "from_cset" mentioned on CPU 1 |css_set_ptr = rcu_dereference((task)->cgroups) |// Hard irq comes, current task is scheduled out. cgroup_attach_task() |cgroup_migrate() |cgroup_migrate_execute() |css_set_move_task(task, from_cset, to_cset, true) |cgroup_move_task(task, to_cset) |rcu_assign_pointer(.., to_cset) |... |cgroup_migrate_finish() |put_css_set_locked(from_cset) |from_cset->refcount return 0 |kfree_rcu(cset, rcu_head) // free from_cset after new gp |add_ptr_to_bulk_krc_lock() |schedule_delayed_work(&krcp->monitor_work, ..) kfree_rcu_monitor() |krcp->bulk_head[0]'s work attached to krwp->bulk_head_free[] |queue_rcu_work(system_wq, &krwp->rcu_work) |if rwork->rcu.work is not in WORK_STRUCT_PENDING_BIT state, |call_rcu(&rwork->rcu, rcu_work_rcufn) <--- request new gp // There is a perious call_rcu(.., rcu_work_rcufn) // gp end, rcu_work_rcufn() is called. rcu_work_rcufn() |__queue_work(.., rwork->wq, &rwork->work); |kfree_rcu_work() |krwp->bulk_head_free[0] bulk is freed before new gp end!!! |The "from_cset" is freed before new gp end. // the task resumes some time later. |css_set_ptr->subsys[(subsys_id) <--- Caused kernel crash, because css_set_ptr is freed. This commit therefore causes kfree_rcu_monitor() to refrain from moving kfree_rcu() memory to the kfree_rcu_cpu_work structure until the RCU grace period has completed for all three categories. v2: Use helper function instead of inserted code block at kfree_rcu_monitor(). Fixes: 34c881745549 ("rcu: Support kfree_bulk() interface in kfree_rcu()") Fixes: 5f3c8d620447 ("rcu/tree: Maintain separate array for vmalloc ptrs") Reported-by: Mukesh Ojha <quic_mojha@quicinc.com> Signed-off-by: Ziwei Dai <ziwei.dai@unisoc.com> Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Tested-by: Uladzislau Rezki (Sony) <urezki@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2023-04-06ftrace: Fix issue that 'direct->addr' not restored in modify_ftrace_direct()Zheng Yejian
Syzkaller report a WARNING: "WARN_ON(!direct)" in modify_ftrace_direct(). Root cause is 'direct->addr' was changed from 'old_addr' to 'new_addr' but not restored if error happened on calling ftrace_modify_direct_caller(). Then it can no longer find 'direct' by that 'old_addr'. To fix it, restore 'direct->addr' to 'old_addr' explicitly in error path. Link: https://lore.kernel.org/linux-trace-kernel/20230330025223.1046087-1-zhengyejian1@huawei.com Cc: stable@vger.kernel.org Cc: <mhiramat@kernel.org> Cc: <mark.rutland@arm.com> Cc: <ast@kernel.org> Cc: <daniel@iogearbox.net> Fixes: 8a141dd7f706 ("ftrace: Fix modify_ftrace_direct.") Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-04-06swiotlb: fix a braino in the alignment check fixPetr Tesarik
The alignment mask in swiotlb_do_find_slots() masks off the high bits which are not relevant for the alignment, so multiple requirements are combined with a bitwise OR rather than AND. In plain English, the stricter the alignment, the more bits must be set in iotlb_align_mask. Confusion may arise from the fact that the same variable is also used to mask off the offset within a swiotlb slot, which is achieved with a bitwise AND. Fixes: 0eee5ae10256 ("swiotlb: fix slot alignment checks") Reported-by: Dexuan Cui <decui@microsoft.com> Link: https://lore.kernel.org/all/CAA42JLa1y9jJ7BgQvXeUYQh-K2mDNHd2BYZ4iZUz33r5zY7oAQ@mail.gmail.com/ Reported-by: Kelsey Steele <kelseysteele@linux.microsoft.com> Link: https://lore.kernel.org/all/20230405003549.GA21326@linuxonhyperv3.guj3yctzbm1etfxqx2vob5hsef.xx.internal.cloudapp.net/ Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com> Tested-by: Dexuan Cui <decui@microsoft.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2023-04-05mm: enable maple tree RCU mode by defaultLiam R. Howlett
Use the maple tree in RCU mode for VMA tracking. The maple tree tracks the stack and is able to update the pivot (lower/upper boundary) in-place to allow the page fault handler to write to the tree while holding just the mmap read lock. This is safe as the writes to the stack have a guard VMA which ensures there will always be a NULL in the direction of the growth and thus will only update a pivot. It is possible, but not recommended, to have VMAs that grow up/down without guard VMAs. syzbot has constructed a testcase which sets up a VMA to grow and consume the empty space. Overwriting the entire NULL entry causes the tree to be altered in a way that is not safe for concurrent readers; the readers may see a node being rewritten or one that does not match the maple state they are using. Enabling RCU mode allows the concurrent readers to see a stable node and will return the expected result. [Liam.Howlett@Oracle.com: we don't need to free the nodes with RCU[ Link: https://lore.kernel.org/linux-mm/000000000000b0a65805f663ace6@google.com/ Link: https://lkml.kernel.org/r/20230227173632.3292573-9-surenb@google.com Fixes: d4af56c5c7c6 ("mm: start tracking VMAs with maple tree") Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com> Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reported-by: syzbot+8d95422d3537159ca390@syzkaller.appspotmail.com Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-04-05tracing: Free error logs of tracing instancesSteven Rostedt (Google)
When a tracing instance is removed, the error messages that hold errors that occurred in the instance needs to be freed. The following reports a memory leak: # cd /sys/kernel/tracing # mkdir instances/foo # echo 'hist:keys=x' > instances/foo/events/sched/sched_switch/trigger # cat instances/foo/error_log [ 117.404795] hist:sched:sched_switch: error: Couldn't find field Command: hist:keys=x ^ # rmdir instances/foo Then check for memory leaks: # echo scan > /sys/kernel/debug/kmemleak # cat /sys/kernel/debug/kmemleak unreferenced object 0xffff88810d8ec700 (size 192): comm "bash", pid 869, jiffies 4294950577 (age 215.752s) hex dump (first 32 bytes): 60 dd 68 61 81 88 ff ff 60 dd 68 61 81 88 ff ff `.ha....`.ha.... a0 30 8c 83 ff ff ff ff 26 00 0a 00 00 00 00 00 .0......&....... backtrace: [<00000000dae26536>] kmalloc_trace+0x2a/0xa0 [<00000000b2938940>] tracing_log_err+0x277/0x2e0 [<000000004a0e1b07>] parse_atom+0x966/0xb40 [<0000000023b24337>] parse_expr+0x5f3/0xdb0 [<00000000594ad074>] event_hist_trigger_parse+0x27f8/0x3560 [<00000000293a9645>] trigger_process_regex+0x135/0x1a0 [<000000005c22b4f2>] event_trigger_write+0x87/0xf0 [<000000002cadc509>] vfs_write+0x162/0x670 [<0000000059c3b9be>] ksys_write+0xca/0x170 [<00000000f1cddc00>] do_syscall_64+0x3e/0xc0 [<00000000868ac68c>] entry_SYSCALL_64_after_hwframe+0x72/0xdc unreferenced object 0xffff888170c35a00 (size 32): comm "bash", pid 869, jiffies 4294950577 (age 215.752s) hex dump (first 32 bytes): 0a 20 20 43 6f 6d 6d 61 6e 64 3a 20 68 69 73 74 . Command: hist 3a 6b 65 79 73 3d 78 0a 00 00 00 00 00 00 00 00 :keys=x......... backtrace: [<000000006a747de5>] __kmalloc+0x4d/0x160 [<000000000039df5f>] tracing_log_err+0x29b/0x2e0 [<000000004a0e1b07>] parse_atom+0x966/0xb40 [<0000000023b24337>] parse_expr+0x5f3/0xdb0 [<00000000594ad074>] event_hist_trigger_parse+0x27f8/0x3560 [<00000000293a9645>] trigger_process_regex+0x135/0x1a0 [<000000005c22b4f2>] event_trigger_write+0x87/0xf0 [<000000002cadc509>] vfs_write+0x162/0x670 [<0000000059c3b9be>] ksys_write+0xca/0x170 [<00000000f1cddc00>] do_syscall_64+0x3e/0xc0 [<00000000868ac68c>] entry_SYSCALL_64_after_hwframe+0x72/0xdc The problem is that the error log needs to be freed when the instance is removed. Link: https://lore.kernel.org/lkml/76134d9f-a5ba-6a0d-37b3-28310b4a1e91@alu.unizg.hr/ Link: https://lore.kernel.org/linux-trace-kernel/20230404194504.5790b95f@gandalf.local.home Cc: stable@vger.kernel.org Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Thorsten Leemhuis <regressions@leemhuis.info> Cc: Ulf Hansson <ulf.hansson@linaro.org> Cc: Eric Biggers <ebiggers@kernel.org> Fixes: 2f754e771b1a6 ("tracing: Have the error logs show up in the proper instances") Reported-by: Mirsad Goran Todorovac <mirsad.todorovac@alu.unizg.hr> Tested-by: Mirsad Todorovac <mirsad.todorovac@alu.unizg.hr> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-04-05Merge branches 'rcu/staging-core', 'rcu/staging-docs' and ↵Joel Fernandes (Google)
'rcu/staging-kfree', remote-tracking branches 'paul/srcu-cf.2023.04.04a', 'fbq/rcu/lockdep.2023.03.27a' and 'fbq/rcu/rcutorture.2023.03.20a' into rcu/staging